Notch Pathway Activation Contributes to Inhibition of C2C12 Myoblast Differentiation by Ethanol

نویسندگان

  • Michelle A. Arya
  • Albert K. Tai
  • Eric C. Wooten
  • Christopher D. Parkin
  • Elena Kudryavtseva
  • Gordon S. Huggins
چکیده

The loss of muscle mass in alcoholic myopathy may reflect alcohol inhibition of myogenic cell differentiation into myotubes. Here, using a high content imaging system we show that ethanol inhibits C2C12 myoblast differentiation by reducing myogenic fusion, creating smaller and less complex myotubes compared with controls. Ethanol administration during C2C12 differentiation reduced MyoD and myogenin expression, and microarray analysis identified ethanol activation of the Notch signaling pathway target genes Hes1 and Hey1. A reporter plasmid regulated by the Hes1 proximal promoter was activated by alcohol treatment in C2C12 cells. Treatment of differentiating C2C12 cells with a gamma secretase inhibitor (GSI) abrogated induction of Hes1. On a morphological level GSI treatment completely rescued myogenic fusion defects and partially restored other myotube parameters in response to alcohol. We conclude that alcohol inhibits C2C12 myoblast differentiation and the inhibition of myogenic fusion is mediated by Notch pathway activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اثر ضددیابتی عصاره زردچوبه از مسیر سلولی غیروابسته به انسولین AMPK

Introduction: Blood glucose is high in diabetic patients. It is taken from blood by two separate pathways: Insulin-dependent pathway of phosphoinositide 3 kinase (PI3K) and insulin-independent pathway AMPK (AMP-Activated protein kinase). The first pathway is impaired in type 2 diabetic patients, but the second pathway is active. On the other hand, curcuma longa extract containing a high percent...

متن کامل

The Effect of Curcumin on GLUT4 Gene Expression as a Diabetic Resistance Marker in C2C12 Myoblast Cells

Objective: Adipocyte and skeletal muscle are important tissues which contribute the development and progression of metabolic disorder. Insulin has a major regulatory function on glucose metabolism in these tissues by redistributing glucose transporter (GLUT4) from intracellular vesicles to the cell surface. Today, due to the side effects of chemical medications attendance to herbal medicines is...

متن کامل

A Foxo/Notch pathway controls myogenic differentiation and fiber type specification.

Forkhead box O (Foxo) transcription factors govern metabolism and cellular differentiation. Unlike Foxo-dependent metabolic pathways and target genes, the mechanisms by which these proteins regulate differentiation have not been explored. Activation of Notch signaling mimics the effects of Foxo gain of function on cellular differentiation. Using muscle differentiation as a model system, we show...

متن کامل

The role of Delta-like 1 shedding in muscle cell self-renewal and differentiation.

Myogenic cells have the ability to adopt two divergent fates upon exit from the cell cycle: differentiation or self-renewal. The Notch signaling pathway is a well-known negative regulator of myogenic differentiation. Using mouse primary myoblasts cultured in vitro or C2C12 myogenic cells, we found that Notch activity is essential for maintaining the expression of Pax7, a transcription factor as...

متن کامل

miR-145a-5p Promotes Myoblast Differentiation

MicroRNAs are a class of 18-22-nucleotide noncoding RNAs that posttranscriptionally regulate gene expression and have been shown to play an important role during myoblast differentiation. In this study, we found that the expression of miR-145a-5p was gradually increased during C2C12 myoblast differentiation, and miR-145a-5p inhibitors or mimics significantly suppressed or promoted the relative ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013